skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Canonne, Clement"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We extend the framework of augmented distribution testing (Aliakbarpour, Indyk, Rubinfeld, and Silwal, NeurIPS 2024) to the differentially private setting. This captures scenarios where a data ana- lyst must perform hypothesis testing tasks on sensitive data, but is able to leverage prior knowledge (public, but possibly erroneous or untrusted) about the data distribution. We design private algorithms in this augmented setting for three flagship distribution testing tasks, uniformity, identity, and closeness testing, whose sample complexity smoothly scales with the claimed quality of the auxiliary information. We complement our algorithms with information- theoretic lower bounds, showing that their sample complexity is optimal (up to logarithmic factors). Keywords: distribution testing, identity testing, closeness testing, differential privacy, learning- augmented algorithms 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. We extend the framework of augmented distribution testing (Aliakbarpour, Indyk, Rubinfeld, and Silwal, NeurIPS 2024) to the differentially private setting. This captures scenarios where a data analyst must perform hypothesis testing tasks on sensitive data, but is able to leverage prior knowledge (public, but possibly erroneous or untrusted) about the data distribution. We design private algorithms in this augmented setting for three flagship distribution testing tasks, uniformity, identity, and closeness testing, whose sample complexity smoothly scales with the claimed quality of the auxiliary information. We complement our algorithms with information-theoretic lower bounds, showing that their sample complexity is optimal (up to logarithmic factors). 
    more » « less
    Free, publicly-accessible full text available June 2, 2026
  3. Loh, Po-Ling; Raginsky, Maxim (Ed.)
  4. We obtain tight minimax rates for the problem of distributed estimation of discrete distributions under communication constraints, where n users observing m samples each can broadcast only ℓ bits. Our main result is a tight characterization (up to logarithmic factors) of the error rate as a function of m, ℓ, the domain size, and the number of users under most regimes of interest. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Ranzato, M; Beygelzimer, A; Dauphin, Y; Liang, P. S.; Wortman Vaughan, J (Ed.)
  8. null (Ed.)